The Generalized Burnside Ring and the K–theory of a Ring with Roots of Unity

نویسندگان

  • W. G. Dwyer
  • E. M. Friedlander
  • S. A. Mitchell
چکیده

Determining the algebraic K-theory of rings of integers in number fields has been the goal of much research. In [10] D. Quillen showed that the Hurewicz map h : Q0(S ) → BGL(Z) (see 1.1 for the notation) induces an interesting map on homotopy groups from the stable homotopy groups of spheres to the algebraic K-theory of the ring Z of rational integers. Quillen observed that if ` is an odd prime and if p 6= ` is another prime generating the `-adic units, then the composite map

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-theory for Ring C*-algebras – the Case of Number Fields with Higher Roots of Unity

We compute K-theory for ring C*-algebras in the case of higher roots of unity and thereby completely determine the K-theory for ring C*algebras attached to rings of integers in arbitrary number fields.

متن کامل

On the commuting graph of non-commutative rings of order $p^nq$

Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with vertex set $RZ(R)$ and two vertices $a$ and $b$ are adjacent iff $ab=ba$. In this paper, we consider the commuting graph of non-commutative rings of order pq and $p^2q$ with Z(R) = 0 and non-commutative rings with unity of order $p^3q$. It is proved that $C_R(a)$ is a commutative ring...

متن کامل

Group rings satisfying generalized Engel conditions

Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1)  y]=[[x ,_( n)  y]  , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y)   ,_( n(x,y))  y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...

متن کامل

*-σ-biderivations on *-rings

Bresar in 1993 proved that each biderivation on a noncommutative prime ring is a multiple of a commutatot. A result of it is a characterization of commuting additive mappings, because each commuting additive map give rise to a biderivation. Then in 1995, he investigated biderivations, generalized biderivations and sigma-biderivations on a prime ring and generalized the results of derivations fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992